

Himawari-8/9 and GCOM-C Non-Meteorological Application Opportunities

Alex Held

Centre for Australian Weather and Climate Research – CAWCR December 2013

Bureau of Meteorology

Selected materials from C. Down – BoM)

Non-Meteorological EOS Product Opportunities

- Dynamic tracking of Fire spread and associated modelling
- Land-Surface Temperature and evapotranspiration
- Monitoring of rapid changes and land-surface dynamics, associated with:
 - Rainfall events
 - Drying/Droughts
 - Fires & Burnt Area Mapping
 - Flood Response
 - Cyclone Damage
 - Crop Phenology dynamics
- Aerosol Climatology
- Ocean and Coastal Water Dynamics and Composition

GCOM-C Specifications - SGLI

GCOM-C SGLI Spectral Bands and Resolution

1	SGLI channels						
1		λ	Δλ	Lund	L	SNR at Lstd	IFOV
	СН	VN, P, SW: nm Τ: μm		VN, P: W/m ² /sr/µm T: Kelvin		VN, P, SW: SNR T: NEAT	m
1	VN1	380	10	60	210	250	250
1	VNZ	412	10	75	250	400	250
1	VN3	443	10	64	400	300	250
1	VN4	490	10	53	120	400	250
1	VN5	530	20	41	350	250	250
1	VN6	565	20	33	90	400	250
1	VN7	673.5	20	23	62	400	250
М	VN8	673.5	20	25	210	250	250
1	VN9	763	12	40	350	1200	250/1000
1	VN10	868.5	20	8	30	400	250
H	VN11	868.5	20	30	300	200	250
Ч	P1	673.5	20	25	250	250	1000
١	P2	868.5	20	30	300	250	1000
1	SW1	1050	20	57	248	500	1000
	SWZ	1380	20	8	103	150	1000
	SW3	1630	200	3	50	57	250
	SW4	2210	50	1.9	20	211	1000
1	T1	10.8	0.7	300	340	0.2	250/500
	T2	12.0	0.7	300	340	0.2	250/500

Himawari (JMA)

 In 2014 Japan will launch the first of its next-generation geostationary meteorological satellites, Himawari- 8.

 The satellite is planned to be operational in mid 2015.

 The sensor for this satellite is the Advanced Himawari Imager AHI, based on the Advanced Baseline Imager developed for GOES-R.

•Himawari-8, and Himawari-9, will replace the current JMA satellites MTSAT-1R and MTSAT-2 over the Australian region.

SIRO

Himawari 8/9 Schedule

 JMA plans to launch Himawari 8 in 2014 and begin it's operations in 2015

• Himawari 9 is planned for in-orbit standby in 2016

•Himawari 8/9 will be in operation around 140 degrees Eastcovering east Asia and the Western Pacific

Specification for Himawari 8/9 Imager (AHI)

Band	Central Wavelength [µm]	Spatial Resolution	
1	0.55 - 0.90	1Km	
2	3.50 - 4.00	4Km	
3	6.50- 7.00	4Km	
4	10.3 – 11.3	4Km	
5	11.5 – 12.5	4Km	CSIRO

8

AHI Spectral Response

AHI Spectral Response

Sequence of Himawari 8/9 AHI Observations in 10 Minute intervals

Himawari 8/9: Temporal Resolution

 AHI imagery will be available to forecasters every 10 minutes.

•This is a significant step change from the current hourly imagery.

 The advantage will come through the ability to track synoptic patterns and severe systems

Spatial Resolution

Himawari Typical Meteorological Products

Wave Length (µm)	Spectrum	Resolution (km ²)	Sample Uses
0.46		1	Daytime aerosol over land and coastal water mapping
0.51	Visible	1	Daytime aerosol, cloud and land properties
0.64		0.5	Daytime cloud fog, and wind motion vectors
0.86		1	Daytime vegetation/burn scar and aerosol over water, and winds
1.6		2	Daytime cloud-top phase and particle size, and snow detection
2.3		2	Daytime land/cloud properties, particle size, vegetation and snow
3.9		2	Surface and cloud, fog at night, fire and winds
6.2		2	High-level atmospheric water vapour, winds and rainfall
7.0		2	Mid-level atmospheric water vapour, winds and rainfall
7.3	Near-IR	2	Lower-level water vapour, winds and SO ₂
8.6		2	Total water for stability, cloud phase, dust, SO ₂ and rainfall
9.6		2	Total ozone, turbulence, and winds
10.4		2	Surface and clouds
11.2		2	Imagery, volcanic ash, sea surface temperatures, clouds and rainfall
12.3		2	Total water, volcanic ash and sea surface temperatures
13.3		2	Air temperature, cloud heights and amounts

True Colour Visible

Multispectral Imagery

Himawari8/9 - GOES-R Product Lists

from GOES-R Algorithm Working Group (AWG) Report

BASELINE Products

- Clouds and Moisture Imagery (KPP)
- Clear Sky Mask
- Cloud Top Pressure and Height
- Cloud Top Phase
- Cloud Top Temperature
- Cloud Particle Size Distribution
- Cloud Optical Path
- Temperature and Moisture Profiles
- Total Precipitable Water

• Stability Parameters (Lifted Index)

- Aerosol Detection
- Aerosols Optical Depth

Derived Motion Winds

- Hurricane Intensity
- Fire/Hot Spot Characterization
- Land and Sea Surface Temperature
- Volcanic Ash
- Rainfall Rate
- Snow Cover
- Downward Solar Insolation: Surface
- Reflected Solar Insolation: TOA

OPTION 2 Products

- Cloud Layer/Heights
- Cloud Ice Water Path
- Cloud Liquid Water
- Cloud Type
- Convective Initiation
- Turbulence
- Low Cloud and Fog
- Enhanced "V"/Overshooting Top
- Aircraft Icing Threat
- SO2 Detections (Volcanoes)
- Visibility
- Upward Longwave Radiation (TOA)
- Downward Longwave Radiation (SFC)
- Upward Longwave Radiation (SFC)
- Total Ozone
- Aerosol Particle Size
- Surface Emissivity
- Surface Albedo
- Vegetation Index
- Vegetation Fraction
- Flood Standing Water
- Rainfall probability and potential
- Snow Depth
- Ice Cover
- Sea & Lake Ice Concentration, Age, Extent, Motion
- Ocean Currents, Currents: Offshore

NEW PRODUCTS AND JOINT R&D OPPORTUNITIES

Multispectral Un-Mixing

Plant Spectra and Spectral Reflectance Bands

Volcanic Ash

Simulated GOES-R of Mount Redoubt eruption 2009 from MODIS

Left: GOES-R Ash Loading

• Right: GOES-R Ash Height

Non-Meteorological Product Opportunities

- Dynamic tracking of Fire spread and associated modelling
- Land-Surface Temperature and evapotranspiration
- Monitoring of rapid changes and land-surface dynamics, associated with:
 - Rainfall events
 - Drying/Droughts
 - Fires & Burnt Area Mapping
 - Flood Response
 - Cyclone Damage
 - Crop Phenology dynamics
- Aerosol Climatology
- Ocean and Coastal Water Dynamics and Composition

Fire Detection Products

- Simulated GOES-R from MODIS
- Top: Simulated 3.9 micron
- Bottom: Wildfire Automated
- Biomass Burning Algorithm

ABI Proxy Data created from MODIS data.

Date: 7-Sep-2004 Time: 17:50 UTC

GOES-R ABI 3.9 µm data

CIMSS GOES-R ABI Wildfire Automated Biomass Burning Algorithm (WF_ABBA) fire mask product.

Experimental WF_ABBA Fire Legend Processed Fire Saturated Pixel Cloudy Fire High Possibility Medium Possibility Fire

No Fire Opaque Cloud

Source: S. Maier - CDU

Burnt Area Mapping

Improved analysis of time-series data for characterising episodic or seasonal phenology dynamics and carbon-cycle modelling

Alice Springs: Semi-arid mulga (Acacia aneura) ecosystem

EVI 2000-2012 Black: gap filled and smoothed data Red: series of double logistic curves fit to the subsequent cycles

Major Land Cover Types

CSIR

Source: L. Lymburner - GA

Sensing Australia's Landscapes

Aerosol Retrieval Algorithm for AHI

- Algorithm: Essentially MODIS algorithm dark-densevegetation approach
- Products: No product over desert and bare soil regions.
 - Over regions where products are available, the accuracy is unsatisfactory with mean aerosol optical depth (AOD) error of 0.137
 - Conclusion: Instrument potentials not fully utilized. New algorithm required for Australia

CSIRO. Australia Continental Aerosol Mapping

Source: R. Mitchell - CSIRO

Sample: AATSR - Aerosol Distribution: Smoke & Dust

Biomass burning during fire season (Sep – Nov) Mineral dust during summer (Dec – Feb)

Source: R. Mitchell - CSIRO

CSIRO. Australia Continental Aerosol Mapping

• Can apply algorithms based on MODIS Terra and Aqua – twice a day

CSIRC

Guerschman et al. (2009) (In collaboration with Geoscience Australia)

Geostationary Land Surface Temperature - A very dynamic variable

(a) CABLE LST

- Complete/continuous coverage
- Hindered by "poor" model inputs

(b) MTSAT-1R LST

- Retrieved product
- Gappy in spatial & temporal coverage

Source: L. Renzullo - CSIRO

Testing up to 8 Australia-wide Evapotranspiration Products

1. Water Balance

- Forced by rainfall
- Constrains ETa by modelling water balance terms to estimate available water
- Little to no remote sensing
- MODELS: (Australian Water Resources Assessment model <u>AWRA</u>, and Australian Water Availability Project model <u>AWAP</u> aka Waterdyn)

2. Surface Energy Balance (SEB)

- Use remotely sensed surface temperature to estimate H between two limiting temperatures derived by energy balance inversion
- MODEL: The Normalised Difference Temperature Index <u>NDTI</u>
- Inversion of the Penman-Monteith equation and uses coarse soil moisture
- MODEL: ETLook ETLK

3. Vegetation Conductance

- Estimate surface (canopy) conductance in surface energy balance model from sat. obs. or products – notably MODIS LAI
- MODELS: Global MODIS ET product MOD16 <u>GLOMO</u>, and Penman-Monteith-Leuning <u>PML</u>

4. Hybrid

- Empirical ETa model that also estimates (a) soil & water evaporation by including wetness (GVMI from SWIR) (b) rainfall interception loss.
 MODEL: CSIRO MODIS ReScaled potential ET model <u>CMRS</u>
- Coupled Water+Energy+Carbon. MODEL: CSIRO Atmosphere Biosphere Land Exchange <u>CABLE</u>

Figure 13 Sample images of AET for a region in western Gueensland (139E-142E, 238-26S) during a flow event in February 2004 illustrating the effects of differing time and space resolution. For CMRS2, AWAP2 and CABLE only monthly data (2004/02/01–2004/02/28) are shown; for ETLK, NDTI, AWRA, PML2 and GLOMO, four 6-day intervals (02/02–02/06, 02/10–02/17, 02/18-02/25, 02/26-03/04) are given. All images cover the same area and are reproduced at the same pixel scale (bpl); the difference in size is due to the variation in spatial resolution (degrees/pixel). The colour scale is the same for all (blue-redm0-5mm/day), EXCEPT for OLOMO, where the scale is multiplied by a factor of 5 (0-timm/day).

King EA, van Niel TG, van Dijk AIJM, Wang Z, Paget MJ, Raupach T, Guerschman J, Haverd V, McVicar TR, Miltenberg I, Raupach MR, Renzullo LJ, Zhang Y. 2011. Actual Evapotranspiration Estimates for Australia Intercomparison and Evaluation. CSIRO: Water for a Healthy Country National Research Flagship: Canberra.

New Generation Geostationary Satellite Applications Workshop 03 April 2013

Global Phyoplankton Functional Types Distribution

Algorithm applied to MTSAT-1R

Proposed Next Steps

Develop a new research program between JAXA-JMA-CSIRO & BoM

- Undertake further analysis on top-five nonmeteorological applications
- Access Himawari simulation data for use in algorithm testing
- Organise joint workshop in late 2014 (in Japan or Australia) to evaluate results of simulation data analysis
- Integrate key algorithms into operational processing system (in early 2015)

THANKS

